Implementing Meshes

Lecture 22

Robb T. Koether
Hampden-Sydney College

Fri, Oct 25, 2019

Outline

(1) Contours

- Contours of a Sphere
- Contours of a Paraboloid
(2) Calculating Normal Vectors
(3) Assignment

Outline

(1) Contours

- Contours of a Sphere
- Contours of a Paraboloid

(2) Calculating Normal Vectors

(3) Assignment

Contours

Definition (s - and t-Contours)

An s-contour is the 1-dimensional curve we get if we hold t fixed and let s vary over its domain. A t-contour is the 1-dimensional curve we get if we hold s fixed and let t vary over its domain.

- Typically, we get a different s-contour for each value of t and a different t-contour for each value of s.
- Together, the s - and t-contours form a grid, or a mesh, of the surface.

Outline

(9) Contours

- Contours of a Sphere
- Contours of a Paraboloid

(2) Calculating Normal Vectors

(3) Assignment

Contours on a Sphere

Example (Contours on a Sphere)

- The sphere is paremetrized by

$$
\begin{aligned}
& x=\cos t \sin s \\
& y=\sin t \\
& z=\cos t \cos s .
\end{aligned}
$$

- Let $t=\frac{\pi}{3}$ and find the s-contour.

Contours on a Sphere

Example (Contours on a Sphere)

- We get

$$
\begin{aligned}
& x=\cos \frac{\pi}{3} \sin s=\frac{1}{2} \sin s \\
& y=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \\
& z=\cos \frac{\pi}{3} \cos s=\frac{1}{2} \cos s
\end{aligned}
$$

- This is the circle

$$
x^{2}+z^{2}=\frac{1}{4}
$$

at the height $y=\frac{\sqrt{3}}{2}$.

Contours on a Sphere

Example (Contours on a Sphere)

- Now let $s=\frac{\pi}{3}$ and find the t-contour.
- We get

$$
\begin{aligned}
& x=\cos t \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \cos t \\
& y=\sin t \\
& z=\cos t \cos \frac{\pi}{3}=\frac{1}{2} \cos t
\end{aligned}
$$

- This is a circle of radius 1 in the plane $x=\sqrt{3} z$.

Outline

(1) Contours

- Contours of a Sphere
- Contours of a Paraboloid

(2) Calculating Normal Vectors

(3) Assignment

Contours on a Paraboloid

Example (Contours on a Paraboloid)

- Find the s-contour of the paraboloid for $s=\frac{\pi}{3}$ and $t=\frac{1}{2}$.
- For the paraboloid,
- Find the s-contour when $t=\frac{1}{2}$.
- Find the t-contours when $s=0$ and when $s=\frac{\pi}{2}$.

Outline

(2) Calculating Normal Vectors

(3) Assignment

Finding Normal Vectors

- At a point $P(s, t)$,
- A vector tangent to the s-contour is given by $\frac{\partial P}{\partial s}$.
- A vector tangent to the t-contour is given by $\frac{\partial P}{\partial t}$.
- These vectors lie in the tangent plane.
- Thus, a normal vector to the surface is

$$
\mathbf{n}=\frac{\partial P}{\partial s} \times \frac{\partial P}{\partial t}
$$

Finding Normals

Example (Finding Normals)

- Find the normals to the surface of the sphere defined by
$x^{2}+y^{2}+z^{2}=1$.
- Let

$$
P(s, t)=(\cos t \sin s, \sin t, \cos t \cos s)
$$

Finding Normals

Example (Finding Normals)

- Then

$$
\begin{aligned}
& \frac{\partial P}{\partial s}=(\cos t \cos s, 0,-\cos t \sin s) \\
& \frac{\partial P}{\partial t}=(-\sin t \sin s, \cos t,-\sin t \cos s)
\end{aligned}
$$

Finding Normals

Example (Finding Normals)

- Then

$$
\begin{aligned}
\mathbf{n} & =\left(\cos ^{2} t \sin s, \cos t \sin t \cos ^{2} s+\cos t \sin t \sin ^{2} s, \cos ^{2} t \cos s\right) \\
& =\left(\cos ^{2} t \sin s, \cos t \sin t+\cos t \sin t, \cos ^{2} t \cos s\right) \\
& =\cos t(\cos t \sin s, \sin t, \cos t \cos s) \\
& =\cos t(x, y, z) \\
\mathbf{N} & =\frac{\mathbf{n}}{|\mathbf{n}|} \\
& =(x, y, z)
\end{aligned}
$$

The Direction of the Normals

- Caution: This proceed is as likely to produce vectors that point "inward" as it is to produce vectors that point "outward."
- It depends on the parametrization.
- If the vectors point inward, then use the negative of the vector if you want them to point outward.

The Paraboloid Mesh

Example (The Paraboloid Mesh)

- Find the normal vectors for a paraboloid.
- Which way do they point?
- Which way should they point?

